Page I of 2 on; COLLAGEN

Environmental Fluoride 1977 pages:

86	hyper-hydroxyprolinuria
	nutritional factors in hydroxyprolinuria
87	glycosylation step in formation of collagen
90	serum immuno-reactive parathyroid hormone levels and with urinary excretion of hydroxyproline in Teotia studies
90	increased bone alkaline phosphatase and urinary hydroxyproline in Italian studies of fluorotic patients
90	hydroxyprolinuria in occupational fluorosis
	importance of nutritional factors in fluorosis hydroxyprolinuria

Fluoride \ The Aging Factor pages;

4	breakdown products in urine at I ppm
4	skin wrinkling
4	ligaments
5	production of
10	pulmonary fibrosis
19-20	autoimmune response to imperfect collagen synthesis
	ligaments
28-33	types of collagen producing cells
	increased serum and urine hydroxyproline, hydroxylysine
	decrease in rat skin and lung collagen at 1 ppm
	increase in number of ameloblast vesicles
	50% increase in collagen formation in bone cells at <1 ppm
	increased protein content in teeth and bone